

Models of the L-H Transition: A Look at an Evolving Story

P. H. Diamond¹, M. Malkov¹, K. Miki², P.-C. Hsu³, N. Fedorczak⁴, G. R. Tynan¹

ICPP 2016

¹ University of California, San Diego

² Japan Atomic Energy Agency

³ Academia Sinica

⁴ CEA

Why a Model?

- Theory needed to formulate ideas, ask questions, map approaches.
- Reduced models *distill* and clarify messages from large scale simulations.
- Large scale simulations have NOT contributed to understanding of L-H transition. GK a no-show.
- Reduced models are natural interfaces between confinement experiments and large simulations.

Outline

- –A look at
 - Phenomena
 - Model evolution
- -The multi-scale DM² model
- -Beyond 1D
- -Things non-trivial
 - Stimulated transitions
 - Power threshold physics
- -Predictions
 - Collisionless regimes
 - Transitions sans flows
- A look ahead

The Phenomena

- –L-H transition since 1982 → transport bifurcation resulting in ETB and confinement enhancement.
- Mechanism: shear suppression of turbulence, transport via feedback loops.

http://wiki.fusenet.eu/fusionwiki/index.php/Pe destal

- Often related to pre-transition flow dynamics and LCO.
- -At least a 2D phenomenon-LSN, USN asymmetry.
- Threshold and hysteresis evident and critical to MFE success.

How the Model Evolved

Multi-scale DM² Model (Miki 2013 and refs. therein)

- Catch: distinction between meso and macro range collapses.

- Picture: Basic space-time evolution to transition
- Recovers many elements of transition phenomenology.

In Similar Spirit – Reynolds Work Criterion: $R_T \ge 1$

- -Idea:
 - to facilitate $\langle v_E \rangle' \uparrow$ via ∇P steepening \leftrightarrow turbulence quench.
 - quench via transfer from turbulence \rightarrow flow, via Reynold stress
- Need: $\langle \tilde{v}_r \tilde{v}_\theta \rangle \langle v_E \rangle' / \gamma_{eff} \langle \tilde{v}^2 \rangle = R_T \ge 1$ turbulence out flow input - Also supported by
 - BOUT++ simulations.
 - -G. Y. Park, et. al.
 - (Flux driven RBM)

ICPP 2016 Alcator C-Mod. Tynan et. al. 2016. 6

Beyond 1D (Fedorczak et. al. 2012)

- LSN vs USN asymmetry in P_T .
- Competition between:
 - E×B shear
 - Magnetic shear
- Magnetic shear tends 'cancel', unless up-down symmetry broken → x-point.
- Bottom line:
 - LSN → shears 'add', larger, broader layer
 - USN \rightarrow shears compete, smaller, narrower layer
- Pre-transition flow shear layer naturally stronger for LSN.
- Recover trend of ∇B -drift asymmetry in P_T .

Miki et. al. 2013

Some Non-trivial Challenges

- -Can model be stretched beyond local 'postdiction'? Address different issues?
- -Specifically:
 - stimulated transitions: i.e. pellets, SMBI, etc. can *lower* L-H threshold. Why? Are dynamics significantly different? How?
- Power thresholds (c.f. Ryter; 2012,13)
 - recover $P_{Th}(n)$
 - why the minimum in *n*?
 - global-local connection?
 - prediction

<u>UC San Diego</u>

Simulated Transitions (Miki, P. D., Hahn et. al. PRL 2013)

- -Pulsed, interior deposition
 - particles deposited inside boundary
 - pressure balance $\rightarrow \nabla T$ adjustment
- -Injection works directly on $\langle v_E \rangle'$ via profiles
 - injection directly affects local electric field shear at separatrix
 - direct knob on transition

Miki et. al. PRL 2013

Interesting Comparison

- Can define shearing ratios for:
 - Turbulence driven $\rightarrow R_T \rightarrow$ Reynolds work
 - Mean flow (∇P) $\rightarrow R_H \rightarrow$ Mean flow shearing, $\sim \langle v_E \rangle' / \Delta \omega$
- Standard fueling: R_T 'leads' $R_H \rightarrow$ turbulence collapse precedes $\langle v_E \rangle$ ' change.
- Injection: R_T and R_H changes coincident in time

- suggests direct effect controls transition

- Supports model flexibility.

6/24/16

Thresholds

- $-P_{Th}(n)$ has minimum. –Why?
- How is the scenario related to the Power Threshold?
 - Is *P_{Th}* minimum recoverable?
- What is the physics/origin of P_{Th} ? Energy coupling?
- How does micro-physics determine threshold scaling?
- Will P_{min} persist in collisionless, electron-heated regimes (ITER)?

Questions and Clues (J. Hughes, Y. Ma, J. Rice, 2011, 12)

- Is P_{Th} set only by local properties at the edge? (conventional wisdom)
- Is P_{Th} minimum related to collisional energy transfer? i.e. $\nu n(T_e - T_i)$. Low *n* branch couples to ions, enables ∇P_i ?
- Note P_{Th} minimum correlates with 'LOC-SOC' transition \rightarrow i.e. min power related to collisional interspecies transfer!
- Threshold controlled by *global* transport processes!?

Rice et. al. 2013

Scenario (c.f. F. Ryter)

- $\nabla P_i|_{edge}$ essential to 'lock in' transition
- To form ∇P_i at low n, etc. need (*collisional*) energy transfer from electrons to ions

$$\frac{\partial T_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} (T_e - T_i) + Q_e$$
$$\frac{\partial T_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = +\frac{2m}{M\tau} (T_e - T_i) + Q_i$$

- Suggests that the minimum is due to:
 - P_{Th} decreases due to increasing heat transfer from electrons to ions, with density
 - P_{Th} increases (stronger edge ∇P_i driven needed) due to increase in shear flow damping
 - Power and edge heat flux are not the only critical variables: also need the ratio of electron energy confinement time to exceed that of e-I temperature equilibrium $\tau_T = \tau_{Ee}/\tau_{ei} > 1$.

• $\tau_T \gg 1$ somewhat equivalent to direct ion heating $\rightarrow Q_{iedge}$

• $\tau_T \ll 1$ ions remain cold \rightarrow no L-H transition (or else, anomalous!) \rightarrow alternative 6/24/16 energy transfer mechanism ICPP 2016 13

Extending the Model

- Based on 1D numerical 5-field model (Miki & Diamond 2012,13+).
- Currently operates on 6 fields $(+P_e)$ with self-consistently evolved transport coefficients, anomalous heat exchange and NL flow dissipation (M. M., et. al. PoP 2015).
- Heat transport, + two species, with energy coupling, i.e. (anomalous heat exchange in color):

$$\frac{\partial P_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} (P_e - P_i) + Q_e - \gamma_{CTEM} \cdot I$$
$$\frac{\partial P_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = +\frac{2m}{M\tau} (P_e - P_i) + Q_i + \gamma_{CTEM} \cdot I + \gamma_{ZFdiss} \cdot I$$
$$\Gamma = -(\chi_{neo} + \chi_t) \frac{\partial P}{\partial r}, \gamma_{ZFdiss} = \gamma_{visc} \left(\frac{\partial \sqrt{\varepsilon}}{\partial r}\right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{\varepsilon}}{\partial^2 r}\right)^2$$

- And DW and ZF energy, plasma density and the mean flow, as before.
- First, only collisional coupling.

Model Studies – Collisional Coupling

- -Heating ratio H_i/H_{i+e} enters as control parameter
- Ion heat dominated transition
- -Strong pre-transition fluctuations of all quantities
- -Well organized post-transition flow
- -Strong P_e edge barrier

$P_{Th}(n, H_{i/(i+e)})$ Scans – Recovering the Minimum

-Point: Heating mix H_i/H_{i+e} is 'hidden variable' in $P_{Th}(n)$ plot, i.e. $P_{Th}(n, H_{i/(i+e)}) \rightarrow P_{Th}(n)$.

- $-P_{Th}(n, H_{i/(i+e)})$:
 - Electron heating at lower densities
 - Ion heating at higher densities
- -Relate $H_{i/(i+e)}$ and n by a monotonic $H_{i/(i+e)}(n)$
- $-P_{Th}(n)$ minimum recovered!

ICPP 2016

Summary of Results with Collisional Coupling

- $P_{Th}(n)$ grows monotonically in both pure ion $H_{i/(i+e)} = 1$ and pure electron $H_{i/(i+e)} = 0$ heating regimes with collisional coupling.
- The descending (low-density) branch, followed by a distinct minimum, results from a combination of:
 - 1. increase in electron-to-ion collisional heat transfer, and
 - 2. growing fraction of heat $H_{i/(i+e)}$ deposited to ions (relative to total heat)
- The later upturn of $P_{Th}(n)$ is due to increase of shear flow damping, with increasing density.
- The heating mix ratio $H_{i/(i+e)} \neq 0$ is essential for the heat transport from the core to build up the ion pressure gradient at the edge, ∇P_i , which is the primary driver of the L-H transition.
- There are many possibilities to render $H_{i/(i+e)} \neq 0$.
- Critical to note:
 - role of 'true' heating mix
 - implication for collisionless, electron heated regimes.

Towards Prediction

-Can model *predict* novel phenomena, as yet unobserved?

-Two examples:

- collisionless, electron-heated transitions: how does energy couple to ∇P to trigger edge bifurcation?
- multiple pathways transitions without Reynolds stress driven flows?

Collisionless Electron Regimes

- -Novel feature: treatment of species coupling
 - separate species
 - collisionless transfer \rightarrow L. Zhao P. D. PoP 2012. (c.f. Manheimer '78, flawed)

- Complicates/enriches feedback loop connectivity
- but must ultimately couple to $\nabla P_i|_{edge}$.

Model Structure

 $\frac{\partial}{\partial t}T_i + [\text{transport}] = Q_i + [\text{collisional transfer}] + [\text{collisionless heating}]$

– Collisionless heating due to shear flow and turbulence

 $\frac{\partial}{\partial t}T_e$ + [transport] = Q_e – [collisional transfer] – [collisionless transfer]

– Collisionless transfer via $\langle \tilde{E} \cdot \tilde{J} \rangle_T$

$$-\gamma_{ZF} \cong \gamma_{visc} \left(\frac{\partial \sqrt{\varepsilon}}{\partial r}\right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{\varepsilon}}{\partial^2 r}\right)^2$$

Collisionless Electron Heated Transitions

- Coupling anomalous, $\langle J_{i,e} \cdot E \rangle$, not $\propto T_e T_i$
- Can't represent as γ_{eff}
- Flow damping: turbulence hyper-viscosity (c.f. P.-C. Hsu, et. al. PoP 2015)
- Transition mechanism: anomalous $e \rightarrow i$ thermal equilibration front

- Transition occurs when P_i front approaches edge \rightarrow triggers increase in ∇P_i at boundary
- Point: anomalous coupling only route to sharpen ∇P_i

Something Different: transitions sans flows

- New transition scenario: *occurs in the absence of turbulence driven shear flow*
- Sensitive to pre-existing L-mode density profile
- Need to understand how to optimize, for best access to Hmode
- Spontaneous L-H transition with suppressed shear flow. The heat pulse applied mid-time of integration with no effect on the H-state established spontaneously.
- Questions:
 - → What characteristics of pretransition profile allow access to H-mode?
 - → Multiple pathways?
 - \rightarrow Basics of attractors? P_{Th} ?

Broader Implications

- Expectations of unique pathway seem unfounded.

-Easy to fool oneself with:

- Purely local observations
- Purely local models \rightarrow 1D, 2D essential!
- Adjustable/fit turbulence intensities
- Unrelenting focus on single case or regime

Where to?, in L-H Model Studies

- -Back transition, hysteresis
- Understand low collisionality regime
- -High n ($n \sim n_g$) transitions; also CX effects
- -2D, 3D (i.e. RMP) models Physics of RMP effect on P_{Th} (Leconte, P.D., Xu)
- How avoid H-mode
- -I-mode \leftrightarrow channel asymmetry

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Science, under Award Number DE-FG02-04ER54738.